Nonhyperbolic Boundary Equilibrium bifurcations in Planar Filippov Systems: a Case Study Approach

نویسندگان

  • Mario di Bernardo
  • Daniel J. Pagano
  • Enrique Ponce
چکیده

Boundary equilibrium bifurcations in piecewise smooth discontinuous systems are characterized by the collision of an equilibrium point with the discontinuity surface. Generically, these bifurcations are of codimension one, but there are scenarios where the phenomenon can be of higher codimension. Here, the possible collision of a non-hyperbolic equilibrium with the boundary in a twoparameter framework and the nonlinear phenomena associated with such collision are considered. By dealing with planar discontinuous (Filippov) systems, some of such phenomena are pointed out through specific representative cases. A methodology for obtaining the corresponding bi-parametric bifurcation sets is developed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of boundary equilibrium bifurcations in planar Filippov systems.

If a family of piecewise smooth systems depending on a real parameter is defined on two different regions of the plane separated by a switching surface, then a boundary equilibrium bifurcation occurs if a stationary point of one of the systems intersects the switching surface at a critical value of the parameter. We derive the leading order terms of a normal form for boundary equilibrium bifurc...

متن کامل

Two Degenerate Boundary Equilibrium Bifurcations in Planar Filippov Systems

We contribute to the analysis of codimension-two bifurcations in discontinuous systems by studying all equilibrium bifurcations of 2D Filippov systems that involve a sliding limit cycle. There are only two such local bifurcations: (1) a degenerate boundary focus, which we call the homoclinic boundary focus (HBF), and (2) the boundary Hopf (BH). We prove that—besides local bifurcations of equili...

متن کامل

One-Parameter bifurcations in Planar Filippov Systems

We give an overview of all codim 1 bifurcations in generic planar discontinuous piecewise smooth autonomous systems, here called Filippov systems. Bifurcations are defined using the classical approach of topological equivalence. This allows the development of a simple geometric criterion for classifying sliding bifurcations, i.e. bifurcations in which some sliding on the discontinuity boundary ...

متن کامل

Characteristic Point Sequences in Local and Global Bifurcation Analysis of Filippov Systems

We explain the set of rules behind of the LabView toolbox for bifurcation analysis of Filippov systems denominated SPTCont 1.0. This software can detect nonsmooth bifurcations in n-dimensional systems using integration-free algorithms based on the evaluation of the vector fields on the discontinuity boundary (DB). In this paper, we present the characteristic point sequences that the software de...

متن کامل

Piecewise Smooth Dynamical Systems Theory: The Case of the Missing Boundary Equilibrium Bifurcations

We present two codimension-one bifurcations that occur when an equilibrium collides with a discontinuity in a piecewise smooth dynamical system. These simple cases appear to have escaped recent classifications. We present them here to highlight some of the powerful results from Filippov’s book Differential Equations with Discontinuous Righthand Sides (Kluwer, 1988). Filippov classified the so-c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • I. J. Bifurcation and Chaos

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2008